

SmartKarrot, Inc.

How We Architected

A Cutting Edge Customer Success
Platform

Amit Singh

February 6, 2020

Contents

1 SmartKarrot Customer Success Platform 4
1.1 The Customer Success Platform 4
1.2 A Success Oriented Architecture 4

2 Server Architecture 6
2.1 SaaS Platform 7
2.2 Microservices 7
2.3 Reporting, Analytics and Data Warehouse 7
2.4 NoSQL Database 8

2.4.1 Amazon DynamoDB 8
2.4.2 Low Latency Operations 8
2.4.3 In-Memory Cache 8
2.4.4 Security 8
2.4.5 ACID Properties 8

3 Web User Interface with React 8
3.1 Why React 8
3.2 State Management 9
3.3 AJAX Networking and API Access 9
3.4 Routing 9
3.5 Graphs 10

4 Micro Front-Ends 10

5 Mobile SDK Architecture 10
5.1 Mobile Hierarchy of Layers 11
5.2 UI Theme Management and Customization 11

How We Architected a Cutting Edge Customer Success Platform Page 1 of 21

SmartKarrot, Inc.

5.3 MVVM (Model-View-Viewmodel) Pattern 11
5.4 API Event Dispatch 12
5.5 Persistent Storage, Cache 12
5.6 Object Relational Mapping (ORM) 12
5.7 Offline 12
5.8 Identity, Access, Security 12

6 Multi-tenanted Architecture 12
6.1 Database Multi-tenanting 13

6.1.1 Linked Account Partitioning (Separate Database) 13
6.1.2 Tenant Name Table Partitioning (Same Database, Separate Schema) 13
6.1.3 Tenant Index Partitioning (Shared Everything) 14
6.1.4 Preferred Approach 14

6.2.1.4.1 Manage Shards 14
6.2.1.4.2 Smaller database - Easily manageable 15
6.2.1.4.3 Tenant identifier in the schema 15
6.2.1.4.4 Elastic pool of shards 15

7 Metering Usage 15
7.1 Event and Compute Logs 15
7.2 Store log text files 16
7.3 Throttle 16
7.4 Sandbox 16

7.4.1 Requirement 16
7.4.2 Implementation 16
7.4.3 No Production Access 17
7.4.4 Limits to Functionality 17
7.4.5 Throttle 17

8 Sandbox 17
8.1 Requirement 17
8.2 Implementation 17
8.3 No Production Access 17
8.4 Limits to Functionality 18
8.5 Throttle 18

9 Security Implementation 18
9.1 Data Encryption 18

9.1.1 Data at Rest 18
Server 18
SDK 18

How We Architected a Cutting Edge Customer Success Platform Page 2 of 21

SmartKarrot, Inc.

9.1.2 Data in Motion 19
9.2 Centralized Key Management 19
9.3 Identity and Access Management 19
9.4 Authenticated Access 19
9.5 Trusted Service Identities and Trusted Subsystems 19
9.6 Security Audit Trail - Monitoring and Logging 20
9.7 Access Control 20
9.8 Compliance to Security Standards 20

9.8.1 ISO 27018 - Personal Data Protection 20
9.8.2 PCI DSS Level 1 Service Provider 20
9.8.3 ISO 27001 - Security Management Standard 21

10 Performance 21

11 Documentation 21

12 References 21

Table of Figures

How We Architected a Cutting Edge Customer Success Platform Page 3 of 21

SmartKarrot, Inc.

1 SmartKarrot Customer Success Platform

1.1 The Customer Success Platform
Businesses are shifting from selling products to providing software and services with a
subscription based model.

The model generates hundreds - sometimes thousands - of monthly revenue streams instead of
a few large product sales.

This complicates the process of measuring and managing “success” with a customer. While
revenue is a good metric of success, it is a lagging indicator. A customer may downgrade or
outright cancel a subscription within months or even weeks if they don’t use or reduce use of
some of the features of a subscription-based product

Just tracking revenue or profit hides the problem of customers going away or downgrading in a
few months only to be replaced by new customers who also last only a few months - a
phenomenon the industry calls “customer churn” or “logo churn” . A high customer churn is 1

a ticking time bomb but is difficult to spot, especially if revenues continue to grow.

Recurring revenues are far more critical in a subscription based model than one-off revenue.
Traditional cost accounting systems and performance measurements systems like the balanced
scorecard are not sufficient in a subscription based model.

The SmartKarrot Customer Success platform aims to be the go-to point for managing customer
success for subscription based platforms. The platform provides early warnings and indicators
like feature usage, user engagement, customer churn and revenue churn that are invaluable
drivers for customer success and business success.

1.2 A Success Oriented Architecture
As we started architecting the platform, we realized that it needed to track and measure every
meaningful user activity and engagement in real time, mash it together with operational data
from CRM systems, data from sales planning and tracking systems like Salesforce, and financial
data from enterprise systems.

The platform needed to mine and analyze this large large mound of data to generate succinct
scorecards and clean dashboards with well thought through widgets.

1 "Logo Churn | SaaSOptics." https://www.saasoptics.com/saaspedia/logo-churn/. Accessed 6 Feb. 2020.

How We Architected a Cutting Edge Customer Success Platform Page 4 of 21

https://www.saasoptics.com/saaspedia/logo-churn/

SmartKarrot, Inc.

It still needed to be a robust, high volume, and secure SaaS platform.

We soon concluded that our bleeding edge customer success platform needed a brand new
form of architecture - what we called the “Success-Oriented” Architecture.

So what did we need from this architecture?

Firstly, a strong data pipeline that collects user engagement data from our customers’ systems.
This came from a host of SDKs for the Web, iOS and Android platforms. The backend needed
to be capable of handling high volume streams, parsing and transforming them and storing
them. We built JavaScript SDKs for the Web and native iOS and Android SDKs for the
mobile platforms.

We needed a robust integration platform that would connect with enterprise finance and
planning systems and third party sources like Salesforce, Freskdesk, Asana, Hubspot, JIRA,
SugarCRM,… We built this integration using microservices, webhooks , an ETL engine and 2

a NoSQL datastore. With a serverless platform, we could do this without running or managing
a single server ourselves.

The platform’s Web user interface is built with React - with carefully designed state
management, routing, AJAX networking, and graph and chart libraries. Widgets are
architected as micro front-ends.

Transactions on the server are managed with a serverless microservices architecture
running on top of a NoSQL database.

The whole system is built as a multi-tenant app with a sharded multi-tenant database
model. This approach is a combination of two approaches: tenant name table partitioning and
tenant index partitioning.

The system needs strong analytics. We use data lakes and a query engine to manage this. A
data lake allows us to store structured and semi-structured information. On top of this, we run
big data processing, real-time analytics and - in the future - machine learning.

The platform itself runs on a SaaS model. We meter the usage of our own services by our
customers. Our metering module uses log analysis to measure resource usage for compute (to
the 100 millisecond level), data usage (at rest and in motion for the NoSQL data, data in data
lakes and file storage), and notifications (SMS, emails, and in-app notifications).

2 "Building WebHook is easy — using AWS Lambda and API" 26 Apr. 2019,
https://medium.com/mindorks/building-webhook-is-easy-using-aws-lambda-and-api-gateway-56f5e5c3a5
96. Accessed 6 Feb. 2020.

How We Architected a Cutting Edge Customer Success Platform Page 5 of 21

https://medium.com/mindorks/building-webhook-is-easy-using-aws-lambda-and-api-gateway-56f5e5c3a596
https://medium.com/mindorks/building-webhook-is-easy-using-aws-lambda-and-api-gateway-56f5e5c3a596

SmartKarrot, Inc.

Our customers love having a sandbox environment where they can quickly try out our service.
Most of our features are available in the sandbox. Our architecture neatly ringfences the
sandbox and allows us to throttle some sandbox services to ensure that the sandbox does not
affect runtime, production system.

The system has sensitive customer data and is designed ground-up to be secure. The platform
is used by customer success managers and senior managers. Even when processing large
volumes of data, it still needs to be quick and performant. Good use of caching, pre-processing
and optimized widgets help with this.

Finally, a good platform is only as good as its documentation. For API documentation, we liked
the approach that Stripe and PayPal have taken. Built using the Slate API document generator,
our documentation is beautifully designed, our documentation has everything on a single page,
with a table of content on the left pane, details at the center and code examples on the right.

Want to know more about how we architected a cutting edge customer success platform? Read
on.

2 Server Architecture

How We Architected a Cutting Edge Customer Success Platform Page 6 of 21

https://www.lucidchart.com/documents/edit/dd695c82-b763-47f6-b2ee-98e5d4e28121/0?callback=close&name=docs&callback_type=back&v=726&s=612

SmartKarrot, Inc.

2.1 SaaS Platform
SmartKarrot is delivered as a SaaS platform - not as a product. While most customers prefer a
SaaS model, a small number want to deploy it on a private cloud.

The platform is multi-tenanted and is designed to support hundreds or customers, hundreds of
thousands or their users.

2.2 Microservices
Business components and services use the microservices variant of SOA (service-oriented
architecture).

The platform is structured as a collection of loosely coupled services as opposed to being a
monolithic architecture. Code written with the microservices pattern is forced to be modular and
easier to understand, develop, test, and more amenable to parallel development and continuous
refactoring.

We use the AWS Lambda serverless compute engine to run our microservies. We like the
scaling, and the 100ms metering. This keeps costs low even with fluctuating computing
demands.

2.3 Reporting, Analytics and Data Warehouse
SmartKarrot has significant logging, metering, reporting and analytics.

At the data layer, this will be separated into a reporting database. The data could use the S3 file
storage. At a later stage, we could shift to using Amazon Redshift. Redshift works well with
denormalized fact tables and data warehouses organised in the star and snowflake schemas.

Amazon Glue will be used as the ETL tool to shunt transaction data in DynamoDB into Redshift.
Amazon Kinesis Firehose will do the job for real time data.

Business intelligence (BI) and data visualisation will come from the cloud-based Amazon
QuickSight. It can be used for ad-hoc analysis, and quickly get business insights from data.

How We Architected a Cutting Edge Customer Success Platform Page 7 of 21

SmartKarrot, Inc.

2.4 NoSQL Database

2.4.1 Amazon DynamoDB
The platform stores its data in a NoSQL database. We chose Amazon DynamoDB.

2.4.2 Low Latency Operations
Unencumbered by data joins and relational mappings, and with data hosted on fast solid-state
drives, we consistently get sub 10 millisecond response times even at scale.

2.4.3 In-Memory Cache
For the moment, this is more than enough for our systems. In the future we will enable the use
of the DynamoDB Accelerator (DAX) in-memory cache to improve the latency from milliseconds
to microseconds.

2.4.4 Security
Data at rest is encrypted using the AES-256 algorithm. Data in motion, to and from the
database, is also similarly encrypted.

2.4.5 ACID Properties
Though the database supports ACID properties completely, we like the speed that comes from
eventually consistent read operations. We almost always use eventually consistent database
reads. This satisfies most of our use cases - other than a handful - where we switch to strongly
consistent reads.

3 Web User Interface with React

3.1 Why React
We use React to build our user interface. The clean, encapsulated component based design
pattern that React articulates goes well with our widget-based UX design.

Each widget, or a set of related widgets, are decoupled from the others. They connect with the
analytics backend, intelligently cache, refresh, and invalidate data, and reload themselves on
the user interface.

How We Architected a Cutting Edge Customer Success Platform Page 8 of 21

SmartKarrot, Inc.

With this widget-component based pattern, we make full use of React’s mapping of its virtual
DOM to the browser DOM and ensure that the minimum possible update of the screen DOM
objects.

All this results in a highly responsive user interface.

3.2 State Management
The Redux state container is the first thing that comes to mind when architects think of a state
management solution to React. Though cumbersome to use, Redux solves the state
management riddle well.

Another very attractive option is Redux’s own Context API. Released a little over a year back in
August 2018, the API provides a single global context to manage shared data and actions.
Context API is a part of React library.

The Context API has a problem though. It is not up to snuff with high frequency updates. We
plan to switch to the Context API when we are sure that this is not an issue any more. In the
meantime we have rolled up a custom state and action management library of our own.

3.3 AJAX Networking and API Access
The SmartKarrot Customer Success platform exposes its services through a RESTful API.
Some good choices for a pre-built solutions are Axios, the React Fetch API and jQuery AJAX.

The React Fetch API is built into React and is often the natural choice.

We use Axios on our platform.

When comparing Axios and the Fetch API, we liked two aspects of Axios:

1. The code is more concise and clean. We don’t need an intermediate function call to
convert the data returned from the server into a JSON object. Axios automates the
JSON transformation.

2. The Axios promise handles errors in a more intuitive way. For example, on a 400 error
response from the server, the Axios promise runs the “catch” block rather than the “then”
block.

3.4 Routing
Single Page Applications (SPAs) - like those built using React - do not load new content each
time a user navigates to a new page.

How We Architected a Cutting Edge Customer Success Platform Page 9 of 21

SmartKarrot, Inc.

We use the React Router library to route content to manage links and route the user to the new
page. As a fresh page is not loaded from the server, the link loads very quickly.

3.5 Graphs
The SmartKarrot Customer Success platform uses graphs and charts extensively to concisely
display information to senior managers. The platform has pie charts, bar graphs, heat maps and
gauges. This calls for an effective and flexible chart library.

We use D3.js JavaScript library - more specifically React wrappers over the D3 library.

4 Micro Front-Ends
A year back we started building the SmartKarrot Customer Success Platform using AngularJS
as the front-end technology.

The platform has multiple dashboards, each with carefully thought through widgets. We offer a
choice to our customers to integrate their finance, HR, and operations enterprise systems and
external systems like Salesforce, Asana, and Freshdesk. Widgets switch on and off based on
what systems are integrated.

We soon realized that that React JavaScript library would suit this requirement much better. But
this brought up the challenge of either rewriting the Angular code in React, or running the same
dashboard with two different technologies. Micro front-ends to the rescue!

We think of widget-based micro front-ends providing similar benefits on the front-end as
microservices do on the backend.

Each component in the micro front-end connects with its own micro-service on the backend.
This deeply specialised ecosystem lets us build large and complex dashboards without the
inefficiencies from a monolithic single-page app architecture on the front-end with a similar
monolith on the back-end.

5 Mobile SDK Architecture
The mobile SDK exposes two layers of services:

1. A native iOS and Android SDK wrapper over the functional REST API.
2. A UI view that lets developers quickly build functionality.

How We Architected a Cutting Edge Customer Success Platform Page 10 of 21

SmartKarrot, Inc.

5.1 Mobile Hierarchy of Layers
Much of the UI layer on the mobile is structured using the MVVM design pattern.

Figure 3: Mobile development view

5.2 UI Theme Management and Customization
This module implements the default themes and exposes a view customization interface to
developers.

5.3 MVVM (Model-View-Viewmodel) Pattern
Our system screens have to display and input a large number of fields (example surveys),
perform validations, access business services on the backend, and marshal data for storage.
Using the traditional MVC pattern will result in bloated and unmanageable controller classes.
We will structure the mobile-side code using MVVM.

How We Architected a Cutting Edge Customer Success Platform Page 11 of 21

https://www.lucidchart.com/documents/edit/75c04b0a-0ed3-4908-b981-ff58eca41b64/0?callback=close&name=docs&callback_type=back&v=340&s=612
https://docs.google.com/document/d/19AZpNCNOvBukw9LEFGl5Wfk-wD-_uXawTCbPpcuMB_c/edit#figur_mobile_development_view

SmartKarrot, Inc.

5.4 API Event Dispatch
App usage events are generated at a high frequency - sometimes tens of them in a minute.
Such API calls need to be buffered and dispatched in a separate thread. This API Event
Dispatch module will buffer and dispatch all high-frequency APIs.

5.5 Persistent Storage, Cache
The single-version-of-truth data will reside on the server. The mobile will cache a relevant part of
it for quicker user responses and offline use. A SQLite database will be used for persistent
storage and cache.

5.6 Object Relational Mapping (ORM)
An ORM utility will be used to convert the table-style relational storage in SQLite into an
object-oriented structure. WaveORM could be used for this on Android systems.

5.7 Offline
Cached data and offline facilities will be critical to good response times on the mobile. A
GraphQL utility will be used for automatic sync and conflict resolution of the cache with the
server storage.

5.8 Identity, Access, Security
The security layer will come from AWS Cognito and IAM. TLS will be used to enable secure
communication between the mobile and the server.

Cached data on the mobile need not be encrypted and will rely on the mobile OS providing a
secure sandbox.

6 Multi-tenanted Architecture
The architecture that we are following on our platform is Multi-Tenant Architecture. Multi-Tenant
architecture simply means that the same app, running on the same OS, with the same hardware
and same data storing mechanism, servers multiple tenants(users). This architecture is very
cost effective (lesser number of licenses = lesser cost), data aggregation/ data mining effort is
minimal and it simplifies release management for the tenants. But this architecture is a little

How We Architected a Cutting Edge Customer Success Platform Page 12 of 21

SmartKarrot, Inc.

complex and security testing is more stringent owing to the fact that multiple customers' data is
being commingled.

6.1 Database Multi-tenanting
There are three approaches DynamoDB provides us to partition our tenants data::

6.1.1 Linked Account Partitioning (Separate Database)
This is the most extreme option available. It provides a separate database namespace and
footprint to every tenant. This is achieved by introducing separate linked AWS accounts for each
tenant(enabling the AWS Consolidated Billing feature) and one common Payer’s account. Once
the mechanism is established, we can provide a separate linked account for each new tenant .
These tenants would then have distinct AWS account IDs and, in turn, have a scoped view of
DynamoDB tables that are owned by that account.

Advantages :

● A bit simpler to manage the scope and schema of each tenant’s data
● Provides a natural model for evaluating and metering a tenant’s usage of AWS

resources.
Disadvantages :

● Cumbersome to manage
● Impractical if there are a large number of tenants

6.1.2 Tenant Name Table Partitioning (Same Database, Separate Schema)
This model embraces all the freedoms that come with an isolated tenant scheme, allowing each
tenant to have its own unique data representation. We may use a distinct naming schema that
prepends a table name with some tenant id, helping us to identify ownership of the table.

Advantages :

● We can apply AWS IAM roles at table level to constrain access based on tenant role
● AWS Cloudwatch metrics can be captured at table level
● IOPS can be applied, allowing to create distinct scaling policies for each tenant

Disadvantages :

● Downside is more on operational and management side. For e.g.: The operational team
will require some awareness of the tenant table naming scheme in order to filter and
present information in a tenant-centric context.

● It adds a layer of indirection to any code you might have that is metering tenant
consumption of DynamoDB resources.

How We Architected a Cutting Edge Customer Success Platform Page 13 of 21

SmartKarrot, Inc.

6.1.3 Tenant Index Partitioning (Shared Everything)
This approach places all the tenant data in the same table(s) and partitions it with a DynamoDB
index. This is achieved by populating the hash key of an index with a tenant’s unique ID. This
means that the keys that would typically be your hash key (Customer ID, Account ID, etc.) are
now represented as range keys.

Advantages :

● It promotes a unified approach to managing and migrating the data for all tenants without
requiring a table-by-table processing of the information.

● Enables a simpler model for performing tenant-wide analytics of the data helping in
profiling trends.

Disadvantages :
● Inability to have more granular, tenant-centric control over access, performance, and

scaling.
● Data has to be isolated very carefully, as queries can, in error, access another

customer’s data.
● This approach could be viewed as creating a single point of failure. Any problem with the

shared table could affect the entire population of tenants.

6.1.4 Preferred Approach
Multi-tenancy can be present at any layer or all the layers. As mentioned above there are
various approaches to achieve multi-tenancy. We are going to go ahead with a combination of
model 6.2.1.2 (Tenant Name Table Partitioning) and model 6.2.1.3 (Tenant Index Partitioning).
This approach is known as Multi-tenant app with sharded multi-tenant database model.

Most SaaS applications access the data of only one tenant at a time, which allows tenant data
to be distributed across multiple databases or shards, where all the data for any one tenant is
contained in one shard. Combined with a multi-tenant database pattern, a sharded model allows
almost limitless scale.

6.2.1.4.1 Manage Shards
Sharding adds complexity. A catalog is required to maintain the mapping between tenants and
databases. In addition, management procedures are required to manage the shards and the
tenant population. For example, procedures must be designed to add and remove shards, and
to move tenant data between shards.

How We Architected a Cutting Edge Customer Success Platform Page 14 of 21

SmartKarrot, Inc.

6.2.1.4.2 Smaller database - Easily manageable
By distributing tenants across multiple databases, the sharded multi-tenant solution results in
smaller databases that are more easily managed. For example, restoring a specific tenant to a
prior point in time now involves restoring a single smaller database from a backup, rather than a
larger database that contains all tenants.

6.2.1.4.3 Tenant identifier in the schema
Depending on the sharding approach used, additional constraints may be imposed on the
database schema. If we use this model we will need to use a Tenant identifier which will be
used as primary key for any user/tenant.

6.2.1.4.4 Elastic pool of shards
Sharded multi-tenant databases can be placed in elastic pools. In general, having many
single-tenant databases in a pool is as cost efficient as having many tenants in a few
multi-tenant databases. Multi-tenant databases are advantageous when there are a large
number of relatively inactive tenants.

7 Metering Usage
Metering data means accurate tracking of client usage and also providing the capacity for
analyzing client usage patterns. The main thing to meter here is the API usage by every user.
API usage comprises of both API gateway and Lambda calls. All this will be metered in a
centralized manner. There are different approaches that we can take to log every user’s API
usage. The two main ways are

● Store logs in dynamoDb
● Store log text files

7.1 Event and Compute Logs
In this process we have a separate table for Logs and store all API calls made by users in it.
The schema for this would be like below (subject to change) :
{
 String userID;
 String apiCall;
 String time;
}
We can have scripts which will fetch us user/ tenant specific data and statistics when required.

How We Architected a Cutting Edge Customer Success Platform Page 15 of 21

SmartKarrot, Inc.

7.2 Store log text files
There are two ways we can go about this. The first method is a combined usage of Amazon’s
Cloudwatch logs to store our log files and then we can use Elastic Search/ Amazon’s
CloudSearch feature to search and consolidate user specific logs. The other option is to use
Amazon’s out of the box solution which is AWS Athena. Athena is an interactive query service
that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so
there is no infrastructure to manage, and you pay only for the queries that you run.

We are going ahead with the Database approach for now. We will write a common utility
function which can be initialized at the beginning of every API call. This will store logs in the Log
table and we can keep a track of API usage.

<Write out the architecture for throttling.>

7.3 Throttle
The metering API will be coupled with a throttle mechanism. This is to prevent degradation of
services across the platform due to a badly design or implemented customer app or a malicious
attack.

<Write out the design for throttling.>

7.4 Sandbox

7.4.1 Requirement
Developers love having a sandbox environment where they can try out a SaaS service without
the elaborate procedure of setting up a full account.

SmartKarrot will provide a sandbox to developers. All the features and functionality will be
available - with minor exceptions and with a throttle. The throttle will ensure that the sandbox
does not affect runtime, production system.

7.4.2 Implementation
The sandbox will internally be implemented as a normal account, with limitations as described
below.

How We Architected a Cutting Edge Customer Success Platform Page 16 of 21

SmartKarrot, Inc.

7.4.3 No Production Access
Sandbox APIs and SDKs will not be available to apps that that in production. Only apps in
development can use them. This restriction is possible to do in mobile SDKs, but not on the
Web.

7.4.4 Limits to Functionality
The sandbox will have all functionality available to developers.

7.4.5 Throttle
Some functionality will be throttled to prevent impact to production systems. An example is the
number of events that can be tracked.

<Write out how throttling will be designed for>

8 Sandbox

8.1 Requirement
Developers love having a sandbox environment where they can try out a SaaS service without
the elaborate procedure of setting up a full account.

SmartKarrot will provide a sandbox to developers. All the features and functionality will be
available - with minor exceptions and with a throttle. The throttle will ensure that the sandbox
does not affect runtime, production system.

8.2 Implementation
The sandbox will internally be implemented as a normal account, with limitations as described
below.

8.3 No Production Access
Sandbox APIs and SDKs will not be available to apps that that in production. Only apps in
development can use them. This restriction is possible to do in mobile SDKs, but not on the
Web.

How We Architected a Cutting Edge Customer Success Platform Page 17 of 21

SmartKarrot, Inc.

8.4 Limits to Functionality
The sandbox will have all functionality available to developers.

8.5 Throttle
Some functionality will be throttled to prevent impact to production systems. An example is the
number of events that can be tracked.

<Write out how throttling will be designed for>

9 Security Implementation
With users using the system over the internet, and the system supporting financial transactions,
the system is designed to be highly secure.

9.1 Data Encryption

9.1.1 Data at Rest

Server
SmartKarrot persists data on the server in these formats:

1. NoSQL database tables.
2. File storage.
3. Analytics data in data lakes.

SmartKarrot encrypts data at rest using the 256-bit Advanced Encryption Standard (AES-256).
The encryption key is managed using AWS’ key management service (KMS).

This encryption applies to table data, keys, indices, replicas, backups, in-memory data structure
caches, file storage, file archives, and analytics data lakes.

SDK
The SDK on the mobile and the Web mainly stores transient data in a store-and-forward event
buffer. A small amount of persistent storage is on a SQLite database that is inside the app
sandbox.

How We Architected a Cutting Edge Customer Success Platform Page 18 of 21

SmartKarrot, Inc.

9.1.2 Data in Motion
SmartKarrot makes extensive use of RESTful API services. All network traffic to and from the
server is encrypted using HTTP over TLS.

9.2 Centralized Key Management
Keys used for encryption are stored in HSMs (hardware security modules) that have been
validated under FIPS 140-2. Keys are centralized, rotated, and audited. Key management is
enabled using AWS KMS (key management service).

9.3 Identity and Access Management
Amazon Cognito will be used to maintain users’ identities and provide authentication.
Authentication can be using a mobile number and OTP.

The system will be used by a wide range of users from the Internet cloud. A strong IAM (identity
and access management) module will be used to provide fine grained access control. For
privileged users (like SmartKarrot administrators) who have access to sensitive functionality, the
system will be protected with additional layers of multi-factor authentication (MFA). One of the
factors will be the use of TOTP (Time-based One-Time Password) generated from an MFA app
like Google Authenticator or Authy.

The app and backend use Amazon Cognito. Use of tokens (temporary, limited-privilege
credentials) will mean that real user credentials are never passed back and forth between the
mobile and the server.

9.4 Authenticated Access
All server resources will be authorized for use only by Amazon Cognito authenticated users.
The Amazon Cognito identity pool’s access to unauthenticated identities will be disabled. And to
be doubly sure, the AWS Identity and Access Management (IAM) role corresponding to the
Amazon Cognito unauthenticated user will have a zero-access role policy.

9.5 Trusted Service Identities and Trusted Subsystems
The server will have a single trusted user service identity, configured through a Cognito identity
pool and their corresponding authenticated role.

How We Architected a Cutting Edge Customer Success Platform Page 19 of 21

SmartKarrot, Inc.

The server-side will be divided into separate security subsystems. Each component will have
separately managed authorization as per a security matrix.

9.6 Security Audit Trail - Monitoring and Logging
Events are on the server is logged to form an audit trail. This event history has both
management and data events. Logs are encrypted.

9.7 Access Control
A small number of staff have controlled, need-to-know access to the SmartKarrot production
environment. Development and test activities are separated into a different cloud account.

9.8 Compliance to Security Standards
Our server runs in the AWS data center in North Virginia, which is certified for many security
standards. Some important ones are listed below.

9.8.1 ISO 27018 - Personal Data Protection
ISO 27018 is a code of practice that focuses on protection of personal data in the cloud. It is
based on ISO information security standard 27002 and provides implementation guidance on
ISO 27002 controls applicable to public cloud Personally Identifiable Information (PII). It also
provides a set of additional controls and associated guidance intended to address public cloud
PII protection requirements not addressed by the existing ISO 27002 control set.

9.8.2 PCI DSS Level 1 Service Provider
The Payment Card Industry Data Security Standard (also known as PCI DSS) is a proprietary
information security standard administered by the PCI Security Standards Council, which was
founded by American Express, Discover Financial Services, JCB International, MasterCard
Worldwide and Visa Inc.

PCI DSS applies to all entities that store, process or transmit cardholder data (CHD) and/or
sensitive authentication data (SAD) including merchants, processors, acquirers, issuers, and
service providers. The PCI DSS is mandated by the card brands and administered by the
Payment Card Industry Security Standards Council.

Level 1 of the standard applies to any service provider that stores, processes and/or transmits
over 300,000 transactions annually.

How We Architected a Cutting Edge Customer Success Platform Page 20 of 21

SmartKarrot, Inc.

9.8.3 ISO 27001 - Security Management Standard
ISO 27001 is a security management standard that specifies security management best
practices and comprehensive security controls following the ISO 27002 best practice guidance.
The basis of this certification is the development and implementation of a rigorous security
program, which includes the development and implementation of an Information Security
Management System (ISMS) which defines how AWS perpetually manages security in a
holistic, comprehensive manner.

10 Performance
A cutting edge customer success platform needs cutting edge performance. Right from the
get-go the SmartKarrot Customer Success Platform analyzed masses of data to show
managers concise health scores, trends and insights. This data is sliced by customer accounts,
time, etc. Senior managers are impatient and don’t want to wait while their screen loads with
such analysis.

Lambda at Edge

11 Documentation

12 References
1. “Logo Churn.” SaaSOptics, 15 Jan. 2020, www.saasoptics.com/saaspedia/logo-churn/.
2. “Context.” React, reactjs.org/docs/context.html.
3. Morales, Emmanuel. “Micro Front-Ends: Web Components.” Medium, Embengineering,

4 Apr. 2018,
medium.embengineering.com/micro-front-end-and-web-components-ce6ae87c3b7f.

*** End of Document ***

How We Architected a Cutting Edge Customer Success Platform Page 21 of 21

